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Abstract 44 

Lack of standardization in biofoundries limits the scalability and efficiency of synthetic biology 45 

research. Here, we propose an abstraction hierarchy that organizes biofoundry activities into four 46 

interoperable levels: Project, Service/Capability, Workflow, and Unit Operation, effectively 47 

streamlining the Design‑Build‑Test‑Learn (DBTL) cycle. This framework enables more modular, 48 

flexible, and automated experimental workflows. It improves communication between researchers 49 

and systems, supports reproducibility, and facilitates better integration of software tools and 50 

artificial intelligence. Our approach lays the foundation for a globally interoperable biofoundry 51 

network, advancing collaborative synthetic biology and accelerating innovation in response to 52 

scientific and societal challenges. 53 

 54 

Introduction and Motivations  55 

In June 2018, fifteen non-commercial biofoundries from four continents gathered in London and 56 

agreed to establish the Global Biofoundry Alliance (GBA)1, a collaborative effort to share 57 

experiences and resources while addressing common challenges and unmet scientific and 58 

engineering needs. Following the experience of the pandemic2, the importance of biofoundries as 59 

a main workforce of biomanufacturing and a sustainable bioeconomy has become even more 60 

highlighted. Biofoundries are more than facilities for conducting experiments using automated 61 

equipment; they are structured Research and Development (R&D) systems where biological 62 

design, validated construction, functional assessment, and mathematical modeling are performed 63 

following the Design-Build-Test-Learn (DBTL) engineering cycle1. A biofoundry can be used for 64 

conducting many heterologous experiments, necessitating the analysis of a wide range of different 65 

experimental protocols and biological assays. In synthetic biology and engineering biology various 66 

terms may be used interchangeably (and occasionally inappropriately), such as “protocols”, 67 

“Standard Operating Procedures (SOPs)”, “workflows”, and “tasks”. Or, for example, the term 68 

“protein design” sometimes refers only to the design step but at other times it can refer to the entire 69 

DBTL process of protein design and engineering. For the operation of automated systems like 70 

biofoundries, it is essential to precisely define these concepts and scope of terms used to describe 71 

different biofoundry activities. Synthetic biology is an applied field that merges disciplines from 72 
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the life sciences and engineering, including molecular biology, chemical biology, genetics, 73 

bioinformatics, chemical and computer engineering. The experiments conducted in biofoundries 74 

extend beyond normal molecular and cell biology experiments and encompass a wide range of 75 

application-driven protocols and methods. This diversity and complexity underscore the need for 76 

a unified framework that not only standardized terminologies and methodologies but also 77 

facilitates the exchange of best practices across biofoundries3. Therefore, it is timely to build an 78 

international collaborative network for sharing biofoundry methodologies and applications using 79 

common terminology and standardized methods.  80 

 81 

Given that biofoundry workflows span from low‑throughput manual protocols to high‑throughput 82 

operations using 96‑, 384‑, and 1536‑well plates, quantitative metrics are crucial for benchmarking 83 

performance improvements, ensuring reproducibility, and maintaining operational quality across 84 

scales. These metrics also enable performance comparisons across different biofoundries, whether 85 

the processes involve semi-automated workflows with manual plate transfers between instruments 86 

or fully automated workflows using robotic arms4. However, developing such quantitative metrics 87 

requires a foundational framework based on standardized protocols. Once standardized workflows 88 

are established, biofoundries can create reference materials and calibration tools to assess 89 

reproducibility and quality levels, enabling measurement comparisons across different instruments. 90 

Prioritizing the standardization of workflows as a prerequisite for metric development enhances 91 

the reliability and interoperability of biofoundry operations. This approach not only ensures 92 

consistent performance across facilities but also mitigates the adverse effects of monopolies by 93 

equipment manufacturers, fostering a more collaborative and equitable biofoundry ecosystem. 94 

 95 

Shifting to a biofoundry environment introduces challenges in adapting experimental protocols. 96 

Many existing lab-based synthetic biology protocols are optimized for manual execution and often 97 

omit details that are assumed to be obvious to trained researchers. When these protocols are 98 

directly applied to automated biofoundry platforms, which typically operate in 96/384-well plate 99 

formats and use liquid-handling robots, differences in sample volumes, concentrations, and 100 

equipment specifications can result in deviations from expected outcomes. In other words, 101 

protocols that work reliably in manual settings may yield inconsistent results in automated 102 

environments unless they are explicitly adapted for such systems. Additionally, human-executed 103 

protocols often omit obvious steps in publications or laboratory manuals, such as sample 104 

preparation. Automated workflows, however, require precise definitions of the location, state, 105 

quantity, and behavior of all materials used. The same equipment is used differently depending on 106 

the application, and equipment turnover in which older instruments are replaced by new ones, 107 

further complicates reproducibility. These challenges underscore the need for highly abstracted 108 

workflows that encapsulate biofoundry-specific processes while accommodating automation 109 

variability.  110 

 111 

Abstraction Hierarchy for Biofoundry Operations  112 
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To address the issues of biofoundry interoperability, we have designed a flexible abstraction 113 

hierarchy for the operation of a biofoundry (Figure 1). Level 0 refers to the Project that is to be 114 

carried out in the biofoundry. This represents a series of tasks to fulfill the requirements of external 115 

users who wish to use the biofoundry. Level 1 Service/Capability, refers to the functions that 116 

external users require from the biofoundry and/or that the biofoundry can provide. Level 2, 117 

Workflow, refers to the DBTL-based sequence of tasks needed to deliver the Service/Capability. 118 

Each workflow is intentionally assigned to a single stage of the DBTL cycle to ensure modularity 119 

and clarity in execution. Level 3 is Unit-operations which represents the actual hardware or 120 

software that will perform the tasks required to fulfill the desired workflow. Engineers or biologists 121 

working at the highest abstraction level do not need to understand the lowest Level 3 operations. 122 

 123 

 124 

Figure 1. Abstraction hierarchy of biofoundry operations across four levels: Project (Level 0), 125 

Service/Capability (Level 1), Workflow (Level 2), and Unit Operation (Level 3). Each workflow 126 

corresponds to a modular step in the DBTL cycle and consists of linked unit operations mapped to 127 

devices. The diagram highlights how project goals are translated into executable protocols, 128 

ensuring clarity and interoperability from high-level intent to low-level execution. 129 
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 130 

Level 1: Services and Capabilities 131 

Researchers and companies in the field of biotechnology can leverage the specialized services and 132 

capabilities provided by biofoundries to achieve their R&D project goals. Examples include 133 

modular long-DNA assembly or Artificial Intelligence (AI) driven protein engineering. In this 134 

report, a biofoundry capability refers to the specialized processes or activities conducted by 135 

biofoundries where clients can be from both academia and industry (including startups/spinouts, 136 

SMEs and larger organizations). Biofoundry services can be divided into various tiers - these range 137 

from simply providing access to specialist equipment to offering a fully comprehensive support 138 

package from project conception to commercialization and scale-up. We can categorize these tiers 139 

of services/capabilities in relation to the synthetic biology DBTL cycle (Table 1).   140 

 141 

Table 1. Biofoundry service/capability category and examples 142 

Type Description Examples 

Tier 1 

A service that supports the use 

of individual piece(s) of 

automated equipment. 

Access to liquid handling robots for training users. 

Tier 2 

A service focusing on an 

individual stage of the DBTL 

cycle. 

Though most biofoundry services require the combination of two or 

more stages in the DBTL cycle, Tier 2 is focused on activities related 

to a single stage. For example, a biofoundry provides a protein 

sequence library designed by ProteinMPNN5. 

Tier 3 

A service combining two or 

more DBTL stages such as 

DB, BT, TL, or LD. 

Most of the heavily used services in the biofoundry belong to this tier. 

For example, AI model (L) training followed by protein design (D). If 

target gene sequence and structure are provided; the service of 

“protein library construction” involves simple construction (B) and 

sequence verification (T). 

Tier 4 
A service supporting the full 

DBTL cycle. 

Example projects could include applying the full DBTL cycle to 

conduct research projects such as “Greenhouse gas bioconversion 

enzyme discovery and engineering”; “Plastic degradation 

microorganism engineering”; “Production of functional materials for 

food/medicine” etc. A good example of the DBTL cycle in Tier 4 is 

demonstrated by the SYNBIOCHEM Biofoundry6, which highlights 

the power of biofoundries in discovering novel chemical pathways 

and optimizing product titer during early-stage scale-up. In the 

healthcare sector, high-demand areas such as Cell Line Development 

and Antibody Discovery could also serve as Tier 4 examples. 

 143 
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Level 2: Workflows 144 

A service/capability consists of sequentially and logically interconnected multiple workflows. 145 

Workflows are designed to be highly abstracted and modularized for clarity and reconfigurability. 146 

Although Workflow has been used to describe the entire DBTL cycle, here we introduce 147 

functionally modular workflows for each stage of the DBTL cycle. Table S1 shows 58 biofoundry 148 

workflows with short descriptions. Each workflow is assigned to one of the specific Design, Build, 149 

Test, or Learn, stages. These workflows encompass the diversity and complexity of synthetic 150 

biology experiments, allowing the reconfiguration and reuse of workflows to achieve different 151 

functional and executable outcomes. For example, the DNA Oligomer Assembly workflow could 152 

be understood to indicate the entire DBTL process for constructing a complete target gene 153 

sequence. However, here we use it specifically to define the DNA assembly step where DNA 154 

oligomers are assembled. This allows for the development of an ontology of specific actions 155 

(workflows) that define the individual steps required to fulfill the entire synthetic biology DBTL 156 

cycle. The modularized workflows can be arranged sequentially to perform arbitrary services. 157 

Figure S1 represents an example of a protein library construction service.  158 

 159 

Level 3: Unit-operations 160 

We define unit operations as the lowest abstraction hierarchy level. Unit operations indicate 161 

individual experimental or computational tasks. These tasks can be conducted by automated 162 

instruments or software tools. By combining unit operations in a sequential manner, workflows 163 

can be designed for specific biological tasks. Table S2 and Table S3 show unit operations for 164 

hardware and software, respectively. A hardware unit operation can be considered the smallest 165 

unit of operation for an experiment corresponding to one or more pieces of equipment. For example, 166 

the Liquid Transfer unit operation is an experiment that can be performed by a single liquid 167 

handling robot, including PCR setup, dilution, and dispensing. For software unit operations, they 168 

are defined based on a software application or package as the smallest unit of operation for an 169 

experiment. For example, Protein Structure Generation unit operation is performed for example 170 

by RFdiffusion7 software application. We propose an initial set of 42 unit operations for hardware 171 

(Table S2) and 37 unit operations for software (Table S3). As an example, DNA Oligomer 172 

Assembly (WB010) workflow can be  represented by 14 unit operations as described in a protocol 173 

for synthetic genome synthesis8 (Table S4, Figure S2). 174 

 175 

Flexibility for General Applicability 176 

The modular workflows and unit operations defined here describe various synthetic biology 177 

experiments through the reconfiguration and reuse of these elements. However, due to the diversity 178 
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of biological experiments and the continuous development of improved equipment and software, 179 

detailed protocols may vary, which can limit the general applicability of fixed workflows and unit 180 

operations. For example, the Liquid Media Cell Culture (WB140) workflow could refer to simple 181 

liquid culture for DNA amplification or could include a culture process involving cell-based 182 

enzyme assays. In other words, the same workflow or unit operation name can encompass different 183 

experimental processes depending on the objectives of the biological experiments. Additionally, 184 

workflows or unit operations may differ among laboratories depending on the functionality of their 185 

available equipment. For instance, the DNA Extraction (WB045) workflow involves sequential 186 

unit operations such as cell lysis and centrifugation. However, some automated equipment can 187 

perform the entire DNA purification process in a single operation, so the Nucleic Acid Extraction 188 

(UH250) unit operation has been separately added to account for such cases. Similarly, some 189 

automated parallel fermenters with functionalities like HT Aerobic Fermentation (UH180) and 190 

Microbioreactor Fermentation (UH200) may integrate Microplate Reading (UH370) or simple 191 

metabolic/sugar detection functionalities.  192 

These challenges highlight the importance of establishing data standards and methodologies for 193 

protocol exchange. Existing standards such as SBOL (Synthetic Biology Open Language)9 and 194 

LabOp (Laboratory Operation Ontology)10 provide good starting points for describing protocols 195 

and workflows in a standardized format. In particular, SBOL’s data model is well-suited to 196 

represent each stage of the Design, Build, Test, and Learn cycle, and it offers a range of tools11 197 

that support data sharing between users, making it compatible with the workflow abstraction 198 

proposed in this study. Developing and collecting biofoundry-specific protocols tailored to diverse 199 

workflows will be crucial for achieving greater interoperability and reproducibility across 200 

biofoundries. This initial version of workflows and unit operations proposed here focuses more on 201 

a conceptual framework, definition and classification for biofoundry operations rather than precise 202 

definitions. Additionally, a set of unit operations can often resemble familiar protocols with slight 203 

variations in methods and naming conventions across laboratories. For example, Golden Gate 204 

Assembly, a well-known assembly protocol in synthetic biology, can be viewed as the sequential 205 

use of unit operations such as Liquid Handling for DNA part preparation and Thermocycling for 206 

enzyme reactions and annealing. This set of unit operations could be named as a distinct Golden 207 

Gate Assembly workflow, though further discussions would be required to formalize this 208 

classification. However, our proposed conceptual framework allows biofoundry operations to be 209 

classified and shared, leading to more standardized operations and the development of calibrants 210 

and measurands to allow comparison and interoperability.  211 

 212 

Software Tools and Data Management 213 

Ensuring that biofoundry-generated protocols and data are reusable, interoperable, and accessible 214 

across diverse systems and institutions will require alignment with the FAIR (Findable, Accessible, 215 



8 

Interoperable, and Reusable) principles12, which are essential for effective biofoundry design and 216 

software integration. The workflows and unit operations proposed here, for each stage of the 217 

DBTL cycle, need to be supported by software tools on multiple levels. For example, the Design 218 

step requires CAD (Computer-Aided Design) tools; the Build step requires simulation of 219 

laboratory operations and translation of protocols into robotic instructions, via files or application 220 

programming interfaces (APIs). The Test stage requires bioinformatics pipelines for data analysis 221 

and finally the Learn stage is supported by mathematical and other computational modelling tools.  222 

Due to limitations of hardware drivers, a soft integration approach that consolidates data is one of 223 

the best options for early-stage biofoundries. Using an integrated database as a single source of 224 

truth aligns well with the FAIR principles. However, each unit operation generates a variety of 225 

metadata such as operational logs, experimental conditions13, and biological raw data14,15 requiring 226 

careful curation and integration of relevant information. To address this, implementing an API 227 

service that runs independently on the computer controlling each piece of equipment, as part of a 228 

distributed data management system, would allow seamless accessibility from anywhere.  229 

Software tools for biofoundries must efficiently analyze large volumes of biological data and 230 

manage a wide variety of diverse experiments. Laboratory Information Management Systems 231 

(LIMS) and Electronic Lab Notebooks (ELNs) are essential for comprehensive data management, 232 

working in tandem with specialized tools tailored to specific experiments or analytical tasks. Well-233 

known open-source ELN-LIMS solutions include openBIS16, Aquarium17, Leaf-LIMS18 and 234 

Galaxy-SynBioCAD19, while Teselagen Operating System20 and Benchling21 are recognized end-235 

to-end commercial solutions. To enable the configurability and flexibility of the workflow 236 

approach proposed here, the software tools are best implemented using a modular architecture. 237 

This approach accommodates the unique setup of individual biofoundries and makes it easier to 238 

add new features or tools to support novel projects. A microservices architecture consisting of 239 

smaller, independently functioning applications simplifies adding or modifying services to adapt 240 

to specific workflows. This architecture is flexible, scalable, and adaptable to meet diverse 241 

biofoundry needs. A microservice architecture with multiple applications specialized for different 242 

workflows is more suitable for diverse biofoundry operations than an all-encompassing solution. 243 

These applications should be developed with separate front-end and back-end components, adhere 244 

to Representational State Transfer (REST) principles22, and be deployed using containerization 245 

technologies like Docker and Kubernetes.  246 

An example is the Edinburgh Genome Foundry's software suite23 that enables in silico sequence 247 

design, modification and cloning; simulation of protocols by modelling microplates and liquid 248 

transfers; and QC through design and analysis of sequencing data. The suite is made up of several 249 

independent libraries (packages of the Python programming language) that, for each workflow, 250 

can be operated individually via a graphical interface (web apps) or are linked together with a shell 251 

script. Using scripts to utilize software to perform the required steps, as opposed to a manual 252 

procedure, is preferable as it has the same advantages as laboratory automation protocols, namely: 253 
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batch processing, self-documentation, precision, reproducibility and speed24. Ideally, these tools, 254 

and the scripts (which represent protocols), are distributed under a free and open-source license, 255 

which is both cost-efficient and allows quick and immediate sharing of expertise and developments 256 

between biofoundries and other users. 257 

ELNs plays a crucial role in integrating various applications and databases, consolidating the 258 

planning and results of experiments, and providing a central source of information. Flexibility can 259 

be maximized by using natural language-based software tools, such as electronic lab notebooks, 260 

to conduct actual biofoundry experiments. Incorporating natural language to describe experiments 261 

enhances the flexibility of workflows and unit operations. A recently proposed approach based on 262 

literate programming25 which integrates text and computer code offers new possibilities for future 263 

ELN development. The ability to embed computer code in ELNs is crucial for extending their 264 

functionality and interacting with other biofoundry applications. In this regard, open-source 265 

programming editors like Jupyter notebook, Rstudio(with Quarto), VScode are among the best 266 

options for use as a biofoundry ELN. Each of these editors can also be leveraged in cloud 267 

environments such as Google Colab, Posit Workbench and GitHub Codespaces, respectively. 268 

However, it is important to note that many institutions and companies require their data to remain 269 

outside the cloud due to security concerns. Furthermore, as data volumes grow and project 270 

durations extend, the high cost of cloud storage can pose a financial burden for biofoundry 271 

operations. Therefore, adopting a strategy that combines the advantages of local storage and cloud 272 

environments is essential to balance cost and accessibility effectively.  273 

For compatibility with ELNs, we illustrate a Tier 3-level Service/Capability example 274 

(Supplementary Information) focused on Part DNA Assembly workflows. This example shows 275 

the design of workflows (Table S5, Figure S3), provides corresponding experimental records 276 

structured according to modular unit operations (Table S6) and its rendered screen shot (Figure 277 

S4). Each modular unit operation is documented in Markdown format using natural language, with 278 

explicit specifications for title, meta data, inputs, outputs, equipment, reagents, and sample IDs, 279 

thereby ensuring full traceability across the workflow. This example illustrates the possibility of 280 

how biofoundry experiments built on an abstraction hierarchy framework, can contribute to 281 

improved reusability, modularity, and enhanced interoperability across different biofoundries. 282 

Discussions and Future Directions 283 

Compared to a regular laboratory, a biofoundry must comprehensively manage a significantly 284 

larger number of equipment, materials, data, experiments, and operations. This necessitates a 285 

robust operational framework that ensures seamless functionality, including equipment 286 

accessibility, consistent material supply, and rapid analysis of collected data to guide subsequent 287 

experimental designs. Biofoundries integrate various automated equipment that should be 288 

cohesively connected and substituted with devices from different manufacturers, emphasizing the 289 

need for a standardized operational platform. This platform should independently manage user-290 
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designed workflows and data, separate from vendor-dependent hardware. RESTful APIs might be 291 

useful for effectively translating information exchanged between these workflows and automated 292 

equipment. By developing an open lexicon and ontology, multiple public-funded biofoundries can 293 

foster cooperation and collaboration on an international scale. While private-sector biofoundries 294 

often employ proprietary toolchains that limit broader interoperability, our proposed 295 

standardization efforts primarily target public-sector and newly emerging biofoundries that require 296 

accessible and flexible operational frameworks. Rather than attempting to encompass all 297 

proprietary systems, we emphasize the use of community-driven open-source standards, such as 298 

SBOL and LabOp, to overcome technical barriers and accelerate the establishment of interoperable 299 

biofoundry infrastructures. A recent report highlighted the need for the development of technical 300 

standards and metrics for engineering biology3, and biofoundries could play a leading role in 301 

enabling such developments.  302 

AI is essential for enhancing the operational efficiency of biofoundries. High construction and 303 

operational costs have been identified as significant challenges, with operational expenses 304 

particularly threatening the sustainability of biofoundries. AI models capable of analyzing 305 

biological and equipment log data generated in biofoundries will be critical for mitigating these 306 

risks. The operational efficiency of a biofoundry is directly related to the efficiency of the 307 

workflows, such as minimizing consumable usage and saving time and labor within workflows. 308 

Optimizing overall biofoundry operations requires a scheduling algorithm that allows multiple 309 

workflows to run simultaneously which minimizes interference between them.  To optimize the 310 

use of limited equipment, it is crucial to continuously monitor the availability of both equipment 311 

and materials, maximize the utilization of available time, and effectively coordinate the workflows 312 

of various users. AI models are also indispensable for predicting errors and equipment failures 313 

during experiments, which helps minimize idle time. This involves collecting data from equipment 314 

log files and using additional edge devices to monitor each piece of equipment. Combining AI for 315 

real-time task scheduling with predictive modeling for potential failures creates a resilient and 316 

adaptive system. Furthermore, biofoundries are uniquely positioned to provide highly curated and 317 

quality-assured datasets, which are critical for the development of robust AI/ML models. By 318 

leveraging their ability to generate standardized, high-quality data, biofoundries can significantly 319 

accelerate advancements in AI/ML-driven research and development. Text-based descriptions of 320 

workflows and unit operations in ELNs (Table S6) will be comprehensively extended by large 321 

language models, bringing innovative changes to R&D processes in biofoundries.  322 

As a follow-up study, developing quantitative metrics to compare workflow performance 323 

comparison and evaluate QC is essential for enhancing reproducibility and maintaining high-324 

quality performance in a biofoundry. For example, quality metrics such as cloning success rates 325 

can be compared between traditional manual vector construction and automated equipment 326 

outcomes. Throughput metrics can measure the workload completed within the same time frame 327 

and scale by manual researchers versus automated systems. Capacity metrics could include the 328 

number of DNA, plasmids, or RNA synthesized within a given timeframe, as well as the number 329 
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of strains constructed. Strain construction metrics, often derived from multiple workflows, serve 330 

as a representative indicator of overall biofoundry performance. Establishing such metrics requires 331 

clear definitions, precise explanations, and measurable formulas. Collaboration within 332 

international partner institutions is essential, not only for building workflows but also for gathering 333 

input on metric development and selection. Such collaboration will facilitate the identification and 334 

adoption of appropriate metrics that accurately reflect biofoundry performance. 335 

The abstraction hierarchy framework proposed here will streamline the integration of diverse 336 

protocols and serve as a foundation for standardization efforts, ensuring reproducibility and 337 

facilitating interoperability across biofoundries. These advancements will enhance the flexibility 338 

of workflow management and establish a strong foundation for distributed biofoundry networks. 339 

Such networks, supported by AI, standardized data, and workflows, represent a transformative step 340 

toward a sustainable bioeconomy and the capacity to address complex global challenges, including 341 

pandemics26.  342 
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