Supplementary Information

Abstraction hierarchy to define biofoundry workflows and operations for interoperable synthetic biology research and applications

Haseong Kim^{1,2,3,4}, Nathan J. Hillson^{5,6}, Byung-Kwan Cho^{4,7}, Bong Hyun Sung^{1,2,3,4}, Dae-Hee Lee^{1,2,3,4,8}, Dong-Myung Kim⁹, Min-Kyu Oh¹⁰, Matthew Wook Chang^{11,12,13,14}, Yong-Su Jin^{15,16}, Susan J Rosser^{17,18}, Peter Vegh^{17,18}, Rennos Fragkoudis^{17,18}, Rosalind Le Feuvre¹⁹, Nigel S. Scrutton¹⁹, Marko Storch^{20,21}, Wonjae Seong^{1,2}, Paul S Freemont*^{20,21,22}, Seung-Goo Lee*^{1,2,3,4}

¹Korea Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea

²Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea

³Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

⁴Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

⁵DOE Agile BioFoundry, Emeryville, CA 94608 U.S.A.

⁶Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, CA 94720 U.S.A

⁷Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

⁸Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea

⁹Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Daejeon, 34134, Republic of Korea

¹⁰Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea

¹¹NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore

¹²Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

¹³Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

¹⁴National Centre for Engineering Biology (NCEB), Singapore, Singapore

¹⁵Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

¹⁶Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

¹⁷School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom

¹⁸Edinburgh Genome Foundry, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom

¹⁹Manchester Institute of Biotechnology, University of Manchester (UoM), United Kingdom

²⁰Department of Infectious Disease, Imperial College London, London, United Kingdom

²¹London Biofoundry, Innovation Hub, White City Campus, Imperial College London, United Kingdom

²²Care Research, and Technology Centre, UK Dementia Research Institute, London, United Kingdom

ID	Stage	Workflows	Description
WD010	Design	General Design of Experiment	This is a general-purpose experimental design workflow that utilizes the Design of Experiment approach. Variables can be independently designed from domains.
WD020	Design	Adaptive Laboratory Evolution Design	Top-down design utilizing random mutations and artificial evolution. Designs may involve UV radiation or environmental stress conditions for inducing artificial sequence mutation.
WD030	Design	Growth Media Design	Growth media design for strain culture, creating optimal growth conditions based on data-driven experimental design to optimize strain growth and productivity. A growth media composition database is established for different organisms, strains, and experiments.
WD040	Design	Parallel Cell Culture/Fermentation Design	Designing conditions for large-scale culturing of proteins, enzymes, or strain activity tests. In fermentation, the Design of Experiment is used to explore initial scale-up conditions for the selected strains. Parameters such as media, temperature, pH expression levels, aeration, and more are optimized.
WD050	Design	DNA Oligomer Pool Design	Designing an oligomer pool for assembling target DNA (Gene, Pathway). The oligomers used here are typically 50–300 bp in length.
WD060	Design	Genetic Circuit Design	Designing genetic circuits for a specific purpose such as biosensors detecting metabolites or logic gate- based cell control. Part sequences stored in a part registry are utilized. This design process includes predictive modeling using quantified DNA parts (e.g., Cello) or predictive tools like RBS calculator for prokaryotic systems.
WD070	Design	Vector Design	The design process for constructing DNA in the form of a plasmid vector, BAC, YAC, HAC, etc.

Table S1. Summary of 58 biofoundry workflows.

WD080	Design	Artificial Genome Design	A bottom-up or middle-level design for creating a novel genome (e.g. Decompression, codon redesign) Data such as host metabolism, essential gene information, and gene/metabolic pathway database can be used.
WD090	Design	Genome Editing Design	CRISPR-based genome editing design. Factors such as types of CRISPRs and host species, as well as off target effects, and thermodynamics and folding o RNA tertiary structure are considered when designing target gRNAs, using dedicated software.
WD100	Design	Protein Library Design	Library design for optimizing protein activity specificity, expression, etc. Various tools (e.g. Alphafold, ProteinMPNN) are used to facilitate protein design. This includes designing random mutation libraries.
WD110	Design	<i>De novo</i> Protein/Enzyme Design	<i>De novo</i> protein or enzyme design using deep learning tools like Rfdiffusion, ProteinMPNN, and Alphafold It includes <i>de novo</i> design of biocatalysts.
WD120	Design	Retrosynthetic Pathway Design	Use of design tools to find pathways to a desired metabolic reaction to the product chemical (e.g. RetroPath). It supports <i>de novo</i> design of optimized pathways and allows the discovery of novel pathway through retrosynthesis. Design tools for databas search for part selection of enzymes to complete the desired reaction pathway (e.g., Selenzyme).
WD130	Design	Pathway Library Design	Designing libraries for optimizing protein function o metabolic pathways. Components stored in a pre-buil DNA parts bank are used. Libraries for pathway expression optimization can be generated by incorporating promoters, RBS, terminators, and othe regulatory elements.
WB010	Build	DNA Oligomer Assembly	Workflow for assembling DNA oligomers into sequences several kb in length. This procedure can begins with an oligomer pool.

WB020	Build	DNA Library Construction	Workflow for creating designed DNA mutant
			libraries, metagenomic libraries, or pathway libraries. It includes methods such as combinatorial and random mutagenesis libraries.
WB030	Build	DNA Assembly	Workflow for assembling double-stranded DNA fragments into several kb sequences or larger. This includes assembling several DNA fragments such as parts or operon-level sequences, in a designed order.
WB040	Build	DNA Purification	This workflow refines crude DNA extracts to achieve high purity suitable for downstream applications. It typically involves methods like column chromatography, magnetic beads, or precipitation to remove contaminants such as proteins, RNA, and salts.
WB045	Build	DNA Extraction	This workflow focuses on releasing DNA from biological samples (e.g., cultured cells, tissues) through lysis and initial separation from major cellular components like proteins and lipids.
WB050	Build	RNA Extraction	The isolation of RNA from biological samples, such as cells or tissues, to enable downstream applications like gene expression analysis, reverse transcription PCR (RT-PCR), or next-generation sequencing (NGS).
WB060	Build	DNA Multiplexing	Workflow for selecting cells grown on solid or liquid media and assigning arbitrary barcodes for identification. Amplified DNA with barcode primers can be obtained from cultured cells, and the barcoded DNA is pooled for the next step of NGS sequencing.
WB070	Build	Cell-free Mixture Preparation	Workflow for preparing master solutions for cell-free reactions. This involves collecting and processing large-scale cultures of specific strains to create the cell extract for cell-free systems, including stages such as cell lysis, purification, and separation.

WB080	Build	Cell-free Protein/Enzyme Expression	Workflow for mixing target DNA with cell-free reaction reagents and producing quantities of proteins or enzymes under specific conditions suitable for high-throughput assays.
WB090	Build	Protein Purification	Workflow for purifying target proteins or enzymes to high purity. This can be conducted by automated equipment capable of handling 96-well plates for high-throughput purification.
WB100	Build	Growth Media Preparation and Sterilization	Workflow for large-scale production, sterilization and aseptic storage of designed solid and liquid media including sterilizing media and fermentatior equipment.
WB110	Build	Competent Cell Construction	Workflow for creating competent cells for transformation. This can be done manually in bulk or using automated equipment to make plate-based competent cells.
WB120	Build	Biology-mediated DNA Transfers	Workflow for transforming designed vector plasmic into cells. This includes 96/384-well plate-based automated or semi-automated transformation procedures. It includes conjugation or other DNA transfer protocols (e.g. phage-mediated).
WB130	Build	Solid Media Cell Culture	Workflow for culturing cells on solid media. If includes post-transformation growth, activity screening, or single-cell/colony isolation from solid medium.
WB140	Build	Liquid Media Cell Culture	Workflow for growing cells in liquid media. I includes inoculum culture and subsequent batch culture processes in liquid medium.

	1		
WB150	Build	PCR-based Target Amplification	This workflow utilizes designed primers and PCR to specifically amplify a target gene sequence from complex templates such as genomic DNA or metagenomic samples, enabling gene screening and retrieval.
WT010	Test	Nucleotide Sequencing	Workflow for sample preparation through native barcode multiplexing and library prep, using NGS equipment to sequence the target DNA and produce fastq files. It includes transcriptomics like RNA.
WT020	Test	Protein Expression Measurement	Quantifying the expression levels of target proteins or enzymes. It includes measurements using techniques such as gel electrophoresis or automated capillary electrophoresis systems. High-throughput proteomics approaches like LC-MS can be integrated. It allows detailed identification and quantification of protein expression and post-translational modifications
WT030	Test	Protein/Enzyme Activity Measurement	Workflow for measuring the activity of purified proteins/enzymes using general or specific methods (e.g., biosensors, chromatography, pNP). The method used is largely dependent on the specific protein/enzyme activity.
WT040	Test	Parallel Cell-free Protein/Enzyme Reaction	Workflow for expressing and simultaneously measuring the activity of target proteins/enzymes in a cell-free reaction system under specific conditions.
WT050	Test	Sample Pretreatment	Workflow for separating and preprocessing metabolites from cultured media using centrifugation, cell lysis, and cell removal steps before purification and analysis. It can be used in the process of proteomics, lipidomics, transcriptomics, and etc.
WT060	Test	Metabolite Measurement	Workflow for quantifying metabolites using GC-MS, LC-MS, and spectroscopy after high-throughput pretreatment. Includes fast measurement of single or complex components and unknown compound analysis.

WT070	Test	High-throughput Single Metabolite Measurement	Workflow for analyzing and measuring a single type metabolite in a well-plate using techniques like biosensors or other biochemical assays such as high-throughput LC-MS.
WT080	Test	Image Analysis	Workflow for analyzing cell growth, morphology, chromatin structure, organelle, and sub-cellular protein localization using a high-throughput optical device, such as a microscope. This workflow includes sample preparation steps for imaging analysis.
WT090	Test	High-speed Cell Sorting	Workflow for sorting cells based on target metabolite or cell activity using genetic circuits that convert the activity into a detectable signal.
WT100	Test	Micro-scale Parallel Cell Culture	Workflow for culturing cells in 0.2 ml–1.2 ml 96 deep well plates. The process includes treatments to induce protein or cell activity.
WT110	Test	Micro-scale Parallel Cell Fermentation	Workflow for performing fermentation in 0.8 ml–2.5 ml volumes while monitoring key parameters (OD, pH, temperature, DO).
WT120	Test	Parallel Cell Fermentation	Workflow for performing fermentation in 15 ml–250 ml volumes while monitoring key parameters in real- time (OD, pH, temperature, DO).
WT130	Test	Parallel Mammalian Cell Fermentation	Workflow for culturing animal cells in 15 ml volumes to explore conditions for maximizing protein production. Monitoring of key parameters such as OD, pH, temperature, DO is performed in real-time.
WT140	Test	Lab-scale Fermentation	Workflow for performing fermentations of less than 10L while monitoring key parameters such as pH, temperature, dissolved oxygen (DO), etc.

WT150	Test	Pilot-scale Fermentation	Workflow for performing fermentations between 10L and 500L while monitoring key parameters such as pH, temperature, dissolved oxygen (DO), etc.
WT160	Test	Industrial-scale Fermentation	Workflow for performing fermentations of more than 500L while monitoring key parameters such as pH, temperature, dissolved oxygen (DO), etc.
WL010	Learn	Sequence Variant Analysis	Workflow for verifying the sequence of template DNA (target genes, pathways, plasmids). This workflow is required for activities such as gene cloning and assembly. This workflow includes the comparison analysis of sequence variants.
WL020	Learn	Genome Resequencing Analysis	Workflow for analyzing SNPs and other genome variations in organisms with reference genomes.
WL030	Learn	De novo Genome Analysis	Workflow for analyzing the genome of new organisms without reference genomes. It includes <i>de novo</i> genome assembly from NGS data
WL040	Learn	Metagenomic Analysis	Workflow for analyzing large volumes of metagenomic sequence data. It includes raw data collection, gene/strain identification, and functional predictions. Machine learning or AI algorithms can be used to identify candidate enzymes from metagenomes.
WL050	Learn	Transcriptome Analysis	Workflow for analyzing transcriptomes (mRNA) from target organisms under different conditions. It includes mRNA sequence analysis and DEG.
WL055	Learn	Single Cell Analysis	This workflow focuses on analyzing individual cells to understand cellular heterogeneity and functional characteristics. It includes techniques such as single- cell RNA sequencing, single-cell ATAC-seq, and other omics approaches.

1	I	I	
WL060	Learn	Metabolic Pathway Optimization Model Development	Workflow for analyzing measured metabolite data, including preprocessing and flux analysis. Specialized software can be used. Machine learning and AI models can be developed using labeled data from metabolic pathway gene sequences and the corresponding metabolite products.
WL070	Learn	Phenotypic Data Analysis	Processing and analyzing phenotypic data, including growth rates, morphological traits, metabolic activity, and image-based phenotypic data. The workflow integrates statistical analysis, image processing, and machine learning to extract quantitative features, identify patterns, and establish phenotype-genotype relationships.
WL080	Learn	Protein/Enzyme Activity Optimization Model Development	Workflow for developing models to optimize the activity of target proteins by utilizing phenotypic and sequence data obtained from protein/enzyme expression and activity measurements. It includes protein structure and function analysis, leveraging pre-trained models or publicly available models (e.g., Alphafold2, Rosettafold, MPNN). This can be used for designing libraries of new functional proteins.
WL090	Learn	Fermentation Optimization Model Development	Workflow for exploring optimal conditions for target compound production based on fermentation data for a given strain. This includes simulation models based on reaction formulas from the process.
WL100	Learn	Foundation Model Development	Workflow for training foundation models using large sequence datasets such as protein DBs or metagenomic CDS.

The modularized workflows can be arranged sequentially to perform arbitrary services. Figure S1 represents an example of the construction of a protein library as a service (D, B, T, L). It starts from protein library design with tools such as ProteinMPNN¹ (WD110). The designed sequences can be constructed by assembling DNA oligomers so oligomer pools are required to be designed by a specific software tool (WD050). After designing an appropriate vector plasmid (WD070), we can conduct a series of build workflows, Oligomer assembly (WB010), Transformation (WB120), Solid Cell Culture (WB130), Liquid Media Cell Culture (WB140), DNA Multiplexing (WB060), and DNA Purification (WB040). Then, we can perform Nucleotide Sequencing (WT010) followed by Sequence Variant Analysis (WL010). The workflows listed in Table S1 can be expanded and updated to account for general usability and modular properties.

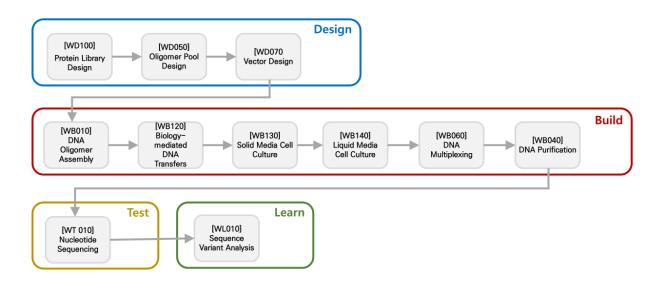


Figure S1. Example workflows for constructing a protein library as a service. This service consists of three Design workflows (blue), six Build workflows (red), and both the Test (yellow) and Learn (green) components, each consisting of a single workflow.

ID	Unit Operation	Equipment	Description
UH010	Liquid Handling	Multiple dispenser system	Basic and fundamental liquid sample operations in laboratory processes such as reagent preparation, sample distribution, dilution, mixing, and washing.
UH015	Bulk Liquid Dispenser	Bulk reagent dispenser	Rapid and accurate dispensing of larger volumes of a single liquid reagent such as growth media and buffers into multi-well plates. Optimized for speed and efficiency in plate preparation tasks.
UH020	96 Channel Liquid Handling	NGS library preparation system	High-throughput, simultaneous dispensing or transferring of liquids across a 96-well plate format. It includes NGS library preparation and magnetic bead-based purification.
UH030	Nanoliter Liquid Dispenser	Acoustic liquid dispenser	Specialized for high-precision dispensing of extremely small liquid volumes, typically in the nanoliter range. It reduces reagent usage, minimizes waste, and allows for scalable, cost-effective workflows.
UH040	Desktop Liquid Handling	Desktop liquid handling system	Small desktop liquid handling system for small-scale automated experiments or educational use.
UH050	Single Cell Sequencing Preparation	Droplet-based high- throughput single- cell platforms	Preparation of single cells for single-cell analysis. It includes processes such as encapsulating single cells with reagents for simultaneous isolation and library preparation.
UH060	Colony Picking	Colony picker	The process of isolating individual bacterial or yeast colonies from an agar plate and transferring them to a liquid culture or multi-well plate for downstream applications.
UH070	Cell Sorting	High-speed flow cytometry	A process used to isolate and categorize cells based on their physical or biological properties, such as size, shape, fluorescence, or other markers. It is used for single-cell analysis, cell line development, or functional studies.
UH080	Cell Lysis	Bead mill or ultrasonic homogenizers	The process of breaking open cells to release their internal components, such as DNA, RNA, proteins, or metabolites, for downstream processing.
UH090	Electroporation	Electroporator	Technique for introducing foreign molecules, such as DNA and RNA, into cells by applying an electrical field.

Table S2. List of unit-operations for hardware

1	1	I	1
UH100	Thermocycling	Thermal cycler	The process of repeatedly heating and cooling a sample through defined temperature cycles to facilitate reactions. It is used in the workflows such as DNA assembly and DNA/RNA amplification.
UH110	Real-time PCR	qPCR	Amplifying and simultaneously quantifying a specific DNA or RNA sequence.
UH120	Plate Handling	Plate handling robot arm	Connecting workflows/unit operations among automated equipment through plate transportation.
UH130	Sealing	Microplate sealer	Plate sealing for PCR, culturing, storing, and etc.
UH140	Peeling	Microplate peeler	Plate cover removal after PCR, culturing, storing, and etc.
UH150	Capping Decapping	Tube capper and decapper	Automatic opening and closing of sample tube caps from storage.
UH160	Sample Storage	Sample storage system	Storing DNA or cell samples, with automated sample retrieval and storage system.
UH170	Plate Storage	Plate hotel	Storing or retrieving plates with an automated system for high-throughput experiments. It improves workflow throughput with integration of automated robotic arms.
UH180	Incubation	Incubator	Maintaining specific conditions for cells or chemical reactions to promote growth or activity.
UH190	HT Aerobic Fermentation	High throughput microbial fermentation system	Process of cultivating microbial or cell cultures under oxygen-rich conditions in a parallelized, automated system. It is generally designed for small-scale (10~250mL) fermentations.
UH200	HT Anaerobic Fermentation	High throughput anaerobic fermentation system	Process of cultivating microbial or cell cultures under oxygen-free conditions in a parallelized, automated system. It is generally designed for small-scale (10~250mL) fermentations.
UH210	Microbioreactor Fermentation	Microbioreactor fermentation system	Process of cultivating microbial or cell cultures covered in micro-scale bioreactors (<10 mL) equipped with advanced monitoring and control capabilities. It is mainly used for high-throughput screening of strains, media, and process parameters.
UH220	Bioreactor Fermentation	Bioreactor fermentation system	Process of cultivating microbial or cell cultures in bioreactors (Liter scale). Bioreactors can operate in batch, fed-batch, or continuous modes and are commonly used in both research and industrial settings.

Í	1	1	1
UH230	Nucleic Acid Fragment Analysis	Nucleic acid fragment analyzer	To separate, identify, and measure fragments of nucleic acids based on their size, concentration, or sequence characteristics.
UH240	Protein Fragment Analysis	Protein fragment analyzer	To separate, identify, and characterize fragments of proteins for the study of structure, size, modifications, interactions, or expressions.
UH250	Nucleic Acid Purification	Nucleic acid purification system	The process of isolating DNA or RNA from biological samples using an automated device.
UH255	Centrifuge	Centrifuge	Separating components of different densities within a liquid sample by applying centrifugal force. Used for pelleting cells, clarifying solutions, separating precipitates, and sample preparation steps.
UH260	Short-read Sequence Analysis	Short read sequence analyzer	Short-read-based sequencing using NGS technologies. It is essential for high-throughput genomic studies and variant detection.
UH270	Long-read Sequence Analysis	Long read sequence analyzer	Long-read-based sequencing using platforms such as Nanopore or PacBio. It provides comprehensive insights into complex genomic regions and structural variations.
UH280	Sequence Quality Control	Sequence quality control system	Evaluating single-cell quality for single-cell analysis.
UH290	LC-MS-MS	LC-MS/MS	High-performance liquid chromatography coupled with tandem mass spectrometry. Provides highly sensitive and selective quantification and structural information by separating components with LC and analyzing specific ions through two stages of mass analysis. Ideal for targeted analysis in complex matrices like biological fluids (e.g., quantifying drug metabolites, analyzing specific peptides).
UH300	LC-MS	LC-MS	Liquid chromatography coupled with mass spectrometry. Separates components using LC and identifies them based on their mass-to-charge ratio. Offers better identification than LC alone but less structural info and selectivity than LC-MS/MS. Used for general profiling (e.g., metabolic profiling, identifying major components in natural extracts).
UH310	HPLC	HPLC	High-performance liquid chromatography. It separates, identifies, and quantifies components in a liquid mixture using high pressure and a detector such as UV-Vis. Common for routine analysis, purity checks, and QC (e.g.,

			analyzing active pharmaceutical ingredient purity, quantifying vitamins in supplements).
UH320	UPLC	UPLC	Ultra-high-performance liquid chromatography. Similar to HPLC but uses smaller particle columns and higher pressures for significantly faster analysis times and higher resolution. Advantageous for high-throughput screening or separating complex mixtures that are difficult for HPLC.
UH330	GC	GC	Gas chromatography. It separates volatile or semi-volatile compounds in their gaseous phase based on their interaction with a stationary phase. Typically uses detectors like FID or TCD. Used for analyzing volatile organic compounds, solvent purity, and flavor/fragrance profiling (e.g., analyzing aroma compounds, measuring ethanol content).
UH340	GC-MS	GC-MS	Gas chromatography coupled with mass spectrometry. It separates volatile components using GC and identifies them based on their mass spectra, often matched against libraries. It provides much better identification capabilities than GC alone. It is widely used in environmental analysis, forensics, and food safety.
UH350	GC-MS-MS	GC-MS/MS	Gas chromatography coupled with tandem mass spectrometry. Offers enhanced sensitivity and selectivity compared to GC-MS by using two stages of mass analysis after GC separation. Ideal for trace analysis in complex matrices.
UH355	SPE-MS-MS	SPE-MS/MS	Solid-Phase Extraction (SPE) system coupled with Tandem Mass Spectrometer. Combines automated SPE for sample cleanup, concentration, and matrix removal with Tandem Mass Spectrometry for highly sensitive and selective quantification. It often used for rapid screening or targeted quantification where extensive chromatography is not needed (e.g., quantifying specific pesticide residues in food extracts after SPE cleanup).
UH360	FPLC	FPLC	Fast protein liquid chromatography. A type of liquid chromatography optimized for the purification of biomolecules like proteins and nucleic acids, typically using lower pressures and biocompatible materials compared to HPLC. Used for preparative scale separation.
UH370	Oligomer Synthesis	Oligomer synthesizer	Parallel synthesis of oligomers using chemical methods or Tdt enzyme-based commercial technologies. It supports

			the production of custom DNA or RNA sequences for research and industrial applications.
UH380	Microplate Reading	Multi-functional microplate reader	Quantification of protein/cell activity by measuring fluorescence, OD, etc. on 96 or 384-well plates. It is essential for high-throughput screening and assay development.
UH390	Microscopy Imaging	Microscopy	Imaging for measuring activity in cells, such as animal cells. It provides detailed visualization for cell biology and histology studies.
UH400	Manual	Manual operations	A general process of experiment including preparation of reagents, labwares, and any manual steps. It encompasses traditional laboratory techniques and procedures.

ID	Unit Operations	Software	Description	
US010	DNA Oligomer Pool Design	Dsembler, DNAWorks	A software package that designs DNA oligomers which are pooled in a single tube. It optimizes the selection and combination of oligomers for efficient DNA assembly and synthesis.	
US020	Primer Design	SnapGene, Primer3, OligoAnalyzer	Designing primers regarding melting temperature and structure. The primers are used for mutant generation, PCR primers, and other molecular biology applications, ensuring specificity and efficiency in amplification.	
US030	Vector Design	VectorNTI, SnapGene, Geneious	Designing vector maps regarding inserts and a plasmid backbone. This might be possible to include primer design and DNA assembly processes, facilitating the construction of functional genetic vectors for cloning and expression.	
US040	Sequence Optimization	GeneOptimizer, JCat	Modifying codon usage of a DNA sequence to maximize protein expression in a specific host. This software ensures optimal translation efficiency and protein yield by adapting sequences to host-specific codon preferences.	
US050	Synthesis Screening	UltraSEQ, Common Mechanism, FAST-NA	Tools for screening of potentially dangerous DNA sequences. These tools help ensure biosafety by identifying sequences that may pose risks in synthetic biology applications.	
US060	Structure based Sequence Generation	ProteinMPNN	Generating sequences based on protein structures using AI models. This software aids in designing novel proteins with desired structural and functional properties.	
US070	Protein Structure Prediction	Alphafold, Rosettafold	Predicting protein structures using AI models. These tools provide insights into protein folding and stability supporting protein engineering and drug discover efforts.	
US080	Protein Structure Generation	Rfdiffusion	Generating protein structures using AI models. This software facilitates the design of new proteins and enzymes with specific catalytic or binding functions.	
US090	Retrosynthetic Pathway Design	RetroPath2.0, ECREACT, BioNavi- NP	To predict biosynthetic pathways using tools for checking reaction feasibilities and for novel pathway discovery. These tools support metabolic engineering by identifying efficient routes for chemical synthesis.	

Table S3. List of unit-operations for software

1	1	I	1
US100	Enzyme Identification	DeepEC, Selenzyme, SoluProt	To search for enzymes from database or to predict enzyme properties such as reactivities for selecting proper enzymes in pathways. This software aids in enzyme discovery and characterization for biocatalysis.
US110	Sequence Alignment	BLAST, MUSCLE	Exploring and comparing sequence similarity using alignment algorithm. These tools are essential for identifying homologous sequences and understanding evolutionary relationships.
US120	Sequence Trimming and Filtering	Trimmomatic, Cutadapt, Porechop, Filtlong	Preprocessing for removing low-quality long/short-read sequences. This step is crucial for ensuring data quality in sequencing projects.
US130	Sequence Mapping and Alignment	BWA, Bowtie2, Minimap2, GraphMap	Mapping long/short-read sequences to reference sequences. These tools are used for genome assembly, variant calling, and transcriptomics.
US140	Sequence Assembly	Velvet, SOAP, Quast, Canu, Flye	Assembling long/short-read sequences for complete gene, pathway, and chromosome. This software supports the reconstruction of genomes and metagenomes.
US145	Metagenomic Assembly	MetaSPAdes, MEGAHIT	Assembling metagenomic data to reconstruct genomes from complex microbial communities. This software supports environmental and clinical metagenomics studies.
US150	Sequence QC	FastQC, MultiQC, NanoPlot, pycoQC	Performing quality control (QC) on Long/short-read fast5 and fastq files. QC is essential for identifying and correcting errors in sequencing data.
US160	Demultiplexing	bcl-convert, Guppy	Separating NGS reads based on native or user-defined barcodes. This process is critical for handling multiplexed sequencing data.
US170	Variant Calling	GATK, bcftools, Sniffles, Longshot	Detecting variants based on read mapping data. These tools are used for identifying SNPs, indels, and structural variants in genomic data.
US180	RNA-Seq Analysis	DESeq2/EdgeR (R), Galaxy, HISAt2	Processing and analyzing transcriptomic data to quantify gene expression levels, identify splice variants, and detect differential gene expression. This software supports functional genomics studies.
US185	Gene Set Enrichment Analysis	GSEA, DAVID	Analyzing gene expression data to identify enriched biological pathways. This software supports functional genomics and systems biology research.

	1	I			
US190	Proteomics Data Analysis	MaxQuant, Perseus, Proteome Discoverer	Processing and interpreting data from mass spectrometry to identify and quantify proteins, understand modifications, and assess protein interactions.		
US200	Phylogenetic Analysis	MEGA, PhyML	Determining the evolutionary relationships among species or sequences by constructing phylogenetic trees based on sequence similarities and differences.		
US210	Metabolic Flux Analysis	COBRA Toolbox, FBA, CellNetAnalyzer	Analyzing the flow of metabolites through metabolic pathways, providing insights into cellular metabolism and pathway optimization.		
US220	Deep learning Data Preparation	pytorch::DataLoader, Huggingface::datasets	Preparing and batching datasets for AI model training and evaluation. This software supports machine learning workflows in bioinformatics.		
US230	Sequence Embedding	ProtT5, ProtBERT, ESM	Biological sequence embedding procedure. This process is used for transforming sequences into numerical representations for machine learning applications.		
US240	Deep Learning Model Training	CNN, LSTM, Transformer	Model training procedure using training data. This software supports the development of AI models for various bioinformatics tasks.		
US250	Model Evaluation scikit-learn, TensorBoard		Utilizing model evaluation metrics (accuracy, precision, recall, F1 score, etc.). This software is used for assessing the performance of machine learning models.		
US260	Hyperparameter Optuna, HyperOpt, Tuning Bayesian opt.		Efficiently exploring the search space using Bayesian optimization techniques. This software supports the optimization of machine learning and deep learning models.		
US270	Model Deployment	TorchScript, Flask, FastAPI	Deploying trained models as services. This software supports the integration of AI models into production environments.		
US280	Monitoring and Reporting	Prometheus, Grafana	Monitoring and visualizing performance and resource usage of AI models.		
US290	Phenotype Data Preprocessing	R, Python	A general preprocess of measured and collected phenotype data. It involves cleaning, organizing, and transforming raw phenotype datasets for downstream analysis.		

US300	XCMS Analysis	XCMS (R)	Analyzing and visualizing chromatographically separated and single-spectra mass spectral data. This software supports metabolomics research.
US310	Flow Cytometry Analysis	flowcore, flowworkspace (R), flowJo	Analyzing and visualizing flow cytometry data. This software supports immunology and cell biology research.
US320	DNA Assembly Simulator	pyDNA (python)	Simulating DNA assembly such as Golden Gate and Gibson for increasing assembly success rate. This software supports synthetic biology and genetic engineering.
US325	Gene Editing Simulation	CRISPResso, CHOPCHOP	Simulating gene editing outcomes using CRISPR technology. This software helps predict off-target effects and optimize guide RNA design for precise genome editing.
US330	Well Plate Mapping	Well plate mapping software	Software for mapping well positions from source plates to destination plates.
US340	Computation	Computer	A general process of data collection, preprocessing, and analysis steps.

Tier 2 Example: (WB010) DNA Oligomer Assembly workflow

The following table shows an example of unit operations for the DNA Oligomer Assembly workflow (WB010) (Table S4). We used the protocol from the genome synthesis study from Hutchison C. *et. al.*² The protocol describes the general process of assembling DNA oligomer fragments to create longer DNA sequences, starting with an oligomer pool containing the oligomer fragments as the initial starting material, and performing steps such as assembly, amplification, error correction, and recovery. Title and Description of each unit operation are more specialized and detailed within the experiment that a user performs. Note that in the case of fully automated biofoundries, additional unit-operations such as Plate Handling, Sealing, and Peeling will be required for this workflow.

Unit	Unit operation	Description
operation	-	
ID		
UH010	Liquid Handling	A DNA oligomer pool and primers resuspended in TE buffer pH8.0 with
		appropriate concentrations and dispense into a 384-well source plate.
UH010	Liquid Handling	Mix polymerase master mix and DW in the source plate.
UH030	Nanoliter Liquid Dispenser	Dispense oligomers from the source plate to the destination plate.
UH100	Thermocycling	Perform PCA with the prepared PCR plate. The parameters are 98°C for
		2 min, 30 cycles of 98°C for 30s and 65°C for 6 min (increasing 15
		sec/cycle), followed by 72°C incubation for 5 min.
UH230	Nucleic Acid Fragment Analysis	Analyze the PCR product along with a standard DNA ladder.
UH100	Thermocycling	Perform PCA reaction with 98°C for 2 min, 2°C/s to 85°C, 85°C for 2
		min, 0.1°C/s to 25°C, 25°C for 2 min for storage.
UH010	Liquid Handling	Prepare samples for the storage
UH160	Sample Storage	Store the sample plates in a storage at 4°C.
UH010	Liquid Handling	Combine template DNA, error correction mix containing DW,
		endonuclease, and exonuclease into a 96-well PCR plate.
UH180	Incubation	Incubate at 42°C for 1 hour.
UH010	Liquid Handling	Dispense 1X Q5 or Phusion polymerase and PCR master mix to a
		destination plate. Prepare primers with appropriate concentration on a
111020	Negelian I insid	source plate.
UH030	Nanoliter Liquid Dispenser	Dispense primers from the source plate to the destination plate.
UH100	Thermocycling	Amplifying template. 98°C for 2 min, 30 cycles of 98°C for 30s and
011100	Thermocyching	65°C for 6 min (increasing 15 sec/cycle), followed by 72°C incubation
		for 5 min.
UH230	Nucleic Acid Fragment	Analyze the PCR product along with a proper DNA ladder.
	Analysis	, Pro anti arong a Propor 21aaaan

Table S4. Details of unit-operations for the DNA Oligomer Assembly (WB010) workflow

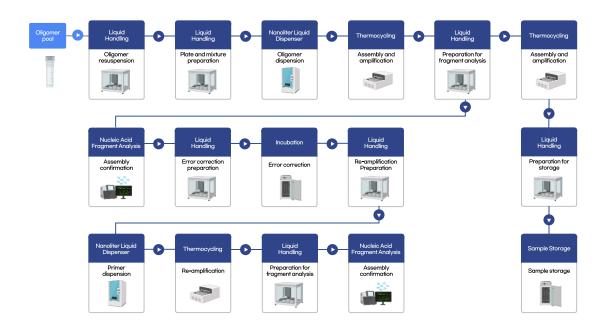


Figure S2. A set of unit operations for the DNA Oligomer Assembly workflow (WB010), illustrating the stepwise experimental process from oligomer resuspension to final sample storage. (Device icons from BioRender.)

Tier 3 Example: Part DNA Assembly (Golden Gate Assembly) Workflows

We illustrate a tier 3 case-study for the application of abstraction hierarchy. This example is established based on the protocol described by Smith et al., Kanigowska, *et al.*, and Wang, Y. *et al.*^{3–5}. It encompasses DNA Assembly (WB030), Biology-mediated DNA Transfers (WB120), Solid Media Cell Culture (WB130), Liquid Media Cell Culture (WB140), Nucleic Acid Size Verification (WB015, optional), DNA extraction (WB045), DNA multiplexing (WB060), and Nucleotide Sequencing (WT010). These workflows are utilizing DNA part stocks consisting of DNA part fragments, overhangs, and Type IIs restriction enzyme recognition sites (e.g. BsaI) to construct transcription units (TUs). Subsequently, plasmids were isolated by transforming and culturing the constructed TUs, and their sequences were analyzed to verify the assembly. Note that Plate Handling (UH120) is not represented for the simplicity. Relationships among the individual unit operations within each workflow were illustrated in Figure S3 (WB015 omitted).

Workflow ID	Workflow	Description	Unit op. ID	Unit operation	Description
WB030	DNA assembly	Preparation and conducting	UH160	Sample Storage	Retrieve the DNA part stocks (including vector plasmid)

Table S5. Details of workflows for Part DNA Assembly service/capability

		golden gate assembly	UH150	Capping Decapping	DNA part stock decapping
			UH170	Plate Storage	Retrieve source/ destination plate
			UH010	Liquid Handling	Dispensing aliquots of reagent stocks and reaction mixtures into the source plate
			UH255	Centrifugation	Spin down in the source plate
			UH030	Nanoliter Liquid Dispenser	Golden Gate assembly mixture dispensing to the destination plate
			UH255	Centrifugation	Mixture spin down in the destination plate
			UH130	Sealing	Sealing the destination plate
			UH100	Thermocycling	Golden Gate assembly reaction
			UH255	Centrifugation	Reaction mixture spin down
			UH140	Peeling	Plate peeling
	D' 1		UH160	Sample Storage	Retrieve competent cell
	Biology- Mediated	Heat shock transformation	UH170	Plate Storage	Retrieve well plates
WB120	DNA Transfers		UH010	Liquid Handling	Transformation reagent preparation
			UH010	Liquid Handling	Heat-shock transformation
WB130	Solid Media Cell Culture	Cell culture in solid media	UH180	Incubation	Solid plate incubation
		liquid culture	UH170	Plate Storage	Retrieve a deep well plate for liquid incubation
	Timid		UH015	Bulk Reagent Dispensing	Dispensing culture media into the deep well plate
WB140	Media Cell Culture		UH060	Colony Picking	Inoculating colonies into liquid culture media in the deep well plate
			UH130	Sealing	Sealing the deep well plate
			UH180	Incubation	Liquid culture incubation
			UH170	Plate Storage	Retrieve a 96-well PCR plate
			UH140	Peeling	Liquid culture plate peeling
	Nucleic Acid Size Verification (Optional)	Part assembly confirmation through size confirmation	UH010	Liquid Handling	Take a small aliquot of liquid culture from a colony-pooled liquid culture plate and inoculate it onto a PCR plate
WB015			UH010	Liquid Handling	Colony PCR mixture preparation and dispensing
			UH130	Sealing	PCR plate sealing
			UH255	Centrifugation	Mixture spin down in the PCR plate
			UH100	Thermocycling	Colony PCR
			UH410	Centrifugation	Plate spin down

			UH140	Peeling	PCR plate peeling
			UH230	Nucleic Acid Fragment Analysis	DNA size confirmation
			UH410	Centrifugation	Cell down the cultured plate
			UH140	Peeling	Plate peeling
			UH250	Nucleic Acid Purification	Plasmid mini prep
WB045	DNA Extraction	Plasmid mini prep and quality control	UH170	Plate Storage	Retrieve a 96-well plate for measuring plasmid concentration
			UH010	Liquid Handling	Transfer extracted DNA into empty well plate
			UH380	Microplate Reading	Measuring DNA concentration
	DNA Multiplexing	Sample treatment & multiplexing	UH160	Sample Storage	Retrieve DNA plasmids
			UH170	Plate storage	Retrieve a 96-well plate
WD0c0			UH020	96 Channel Liquid Handling	Adapter, size selection, barcoding
WB060			UH280	Sequence Quality Control	Measuring DNA concentration
			UH230	Nucleic Acid Fragment Analysis	DNA size confirmation
WT010	Nucleotide Sequencing	Sequencing	UH270	Long-read Sequence Analysis	Long read sequencing

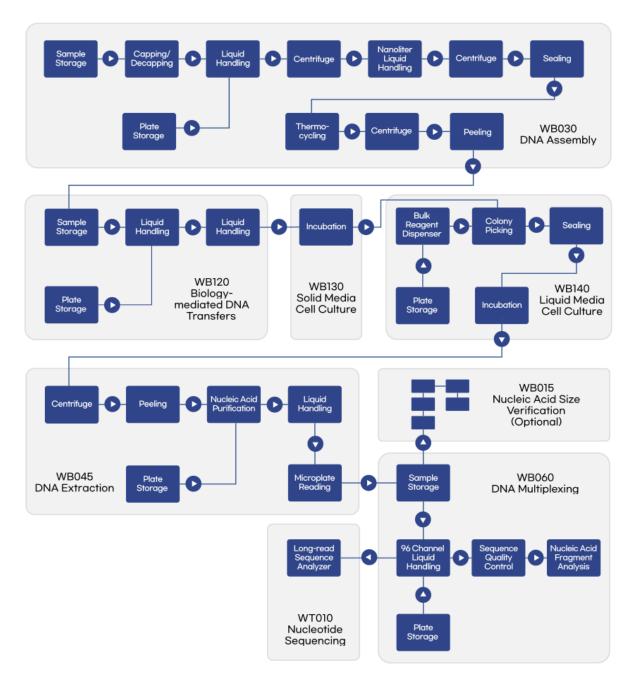


Figure S3. A set of unit-operations comprising the workflows from DNA Assembly to Long Read Plasmid DNA Sequencing (Workflow IDs: WB030, WB120, WB140, WB040, WB060, and WT010). It illustrates how sequential unit operations are orchestrated to automate complex synthetic biology tasks. Each workflow segment can be flexibly reconfigured, highlighting the practical application of the proposed abstraction hierarchy in constructing scalable and interoperable biofoundry workflows.

The three workflows and their unit operations constituting the Tier 3 capability of Part DNA Assembly can be electronically documented in markdown format as shown in Table S6. The first three workflows, DNA Assembly (WB030), Biology-mediated DNA Transfers (WB120), and Solid Media Cell Culture (WB130) are represented using Heading 2 ("##") level markdown headers, and the individual unit operations within each workflow are described using Heading 3 ("###") level headers. Each unit operation is systematically described with the necessary records. The unit operation name is enclosed in brackets, followed by a specific description of the experiment in the title. Metadata related to the specific operation including operator information, date, and time is recorded. Detailed methodologies outlining the reagents, consumables, and equipment required for each operation are also included. Input and Output records are specified to allow tracking of samples throughout the workflows, supporting traceability and reproducibility. In addition, Python code snippets can be included to dynamically display sample names and IDs based on mapping files. When using interactive editors like Jupyter Notebook, the executed code will display actual sample information, whereas standard text editors will show the code itself. This structure not only organizes the experimental records systematically but also enhances workflow modularity and reusability, aligning with the proposed abstraction hierarchy framework for biofoundry operations.

Table S6. Details of workflows and unit operations in markdown format. Workflows are represented using Heading 2 ("##") level markdown headers, and the individual unit operations within each workflow are described using Heading 3 ("###") level headers.

```
## DNA Assemblv
### [Sample Storage] DNA Part Stock Preparation
#### Meta
   Operator: User
   Date: DD.MM.YYYY
   Time: 00:00
#### Reagents
   DNA part stock (stock list: part DB.xlsx)
#### Consumables
- None
#### Equipment
   Sample storage system
#### Input
- Assembly design file (Capital letter means part's own sequence)
     - P0010, Promoter, BBa_K088007,
       ggtctcagcctTATAAGATCATACGCCGTTATACGTTGTTTACGCTTTGaaagagagacc
     - P0017, Promoter,
                            BBa R1075,
       ggtctcagcctTTAAATTTCCTCTTTTCAGGCCGGAATAACTCCCTATAATGCGCCACCAaaagagagacc
     - P0008, Promoter,
                            BBa J23116,
       ggtctcagcctTTGACAGCTAGCTCAGTCCTAGGGACTATGCTAGCaaagagagacc
     - P0007, Promoter,
                            BBa_J23115,
       ggtctcagcctTTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCaaagagagacc
```

- R0023, RBS, BBa_B0034, ggtctcactttTCTAGAGAAAGAGGAGAAATActgcagagacc - R0021, RBS, BBa B0030, ggtctcactttTCTAGAGATTAAAGAGGAGAAATActgcagagacc - R0022, RBS, BBa_B0032, ggtctcactttTCTAGAGTCACACAGGAAAGTActgcagagacc - C0002, CDS, sfGFP, ggtctcagcag[HQ873313.1]ttagagagacc - T0031, Terminator, L3S2P22, ggtctcactaaCTCGGTACCAAATTCCAGAAAAGAGGCCGCGAAAGCGGCCTTTTTTCGTTTTGGTCCGTGAagagacc L3S1P51, - T0032, Terminator, ggtctcactaaAAAAAAAAAAAAAGGCCTCCCAAATCGGGGGGCCTTTTTTATTGATAACAAAAGTGAagagacc - T0030, Terminator, L3S1P52, ggtctcactaaTCTAACTAAAAAGGCCTCCCAAATCGGGGGGCCTTTTTTATTGATAACAAAAGTGAagagacc - T0033, Terminator, L3S3P56, ggtctcactaaGCATTAGGTCTCACTAATTTTCGAAAAAACACCCTAACGGGTGTTTTTTTGTTTCTGGTCTCCCTCACAGA GACCAAAGCAGTGAagagacc - V0001, Vector, pACBB-carrier, ggtctcatcac[CmR, p15A]aggcagagacc #### Method Check DNA samples for using Golden Gate assembly Bring Capped DNA samples for Golden Gate assembly from storage system _ #### Output Capped DNA tubes from Sample storage system ### [Capping Decapping] DNA Part Stock Decapping #### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagents None #### Consumables None #### Equipment Tube capper and decapper #### Input Capped DNA tubes from Sample storage system #### Method Decapping DNA stocks using Tube capper and decapper #### Output Decapped DNA tubes ### [Plate storage] Golden Gate Assembly Mixture Preparation #### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagents None #### Consumables 384 PP plate for source plate

96 well plate for destination plate #### Equipment Plate hotel #### Input Experiment design documents #### Method Retrieve plates for experiment as designed #### Output - WPL0001, a 96 well plate for Golden Gate assembly (destination plate) - WPL0002, a 384 well plate for Golden Gate assembly (source plate) ### [Liquid handling] Dispensing DNA parts in Source Plate for Golden Gate Reaction ### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagent None #### Consumables None #### Equipment - Automated liquid handler #### Input - Decapped DNA tubes - P0010, Promoter, BBa K088007, ggtctcagcctTATAAGATCATACGCCGTTATACGTTGTTTACGCTTTGaaagagagacc - P0017, Promoter, BBa R1075, ggtctcagcctTTAAATTTCCTCTTTTCAGGCCGGAATAACTCCCTATAATGCGCCACCAaaagagagacc - P0008, Promoter, BBa J23116, ggtctcagcctTTGACAGCTAGCTCAGTCCTAGGGACTATGCTAGCaaagagagacc - P0007, Promoter, BBa J23115, ggtctcagcctTTTATAGCTAGCTCAGCCCTTGGTACAATGCTAGCaaagagagacc BBa_B0034, ggtctcactttTCTAGAGAAAGAGGAGAAATActgcagagacc - R0023, RBS, ggtctcactttTCTAGAGATTAAAGAGGAGAAATActgcagagacc - R0021, RBS, BBa B0030, ggtctcactttTCTAGAGTCACACAGGAAAGTActgcagagacc - R0022, RBS, BBa B0032, - C0002, CDS, sfGFP, ggtctcagcag[HQ873313.1]ttagagagacc - T0031, Terminator, L3S2P22, ggtctcactaaCTCGGTACCAAATTCCAGAAAAGAGGCCGCGAAAGCGGCCTTTTTTCGTTTTGGTCCGTGAagagacc - T0032, Terminator, L3S1P51, ggtctcactaaAAAAAAAAAAAAAGGCCTCCCAAATCGGGGGGCCTTTTTTATTGATAACAAAAGTGAagagacc - T0030, Terminator, L3S1P52, ggtctcactaaTCTAACTAAAAAGGCCTCCCAAATCGGGGGGCCTTTTTTATTGATAACAAAAGTGAagagacc - T0033, Terminator, L3S3P56, ggtctcactaaGCATTAGGTCTCACTAATTTTCGAAAAAACACCCTAACGGGTGTTTTTTTGTTTCTGGTCTCCCTCACAGA GACCAAAGCAGTGAagagacc - V0001, Vector, pACBB-carrier, ggtctcatcac[CmR, p15A]aggcagagacc WPL0002, a 384 PP plate from plate hotel #### Method DNA part preparation Thaw the decapped DNA parts at room temperature.

- All of DNA parts should be duplex primer or PCR-product containing Type IIs restriction enzyme recognition site and overhang sites repeated pipetting the thawed DNA parts, then to collect the liquids. Place the tube containing the DNA part into the liquid handler Dispense 40 µL of DNA parts into the 384-well PP plate (WPL0002) using liquid handler. Refer to the JANUS G3 mapping file for precise dispensing Source_plate_information: \Source_for_Golden Gate-PCR.csv add at least 30 μ L for refill #### Output: WPL0002, Source plate with DNA parts ### [Liquid handling] Golden Gate Reaction Enzyme Mixture Dispensing in Source Plate ### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagent Distilled Water T4 DNA ligase Type IIS restriction enzyme 10x T4 DNA ligase buffer _ #### Consumables Pipet tips 2 ml tube #### Equipment - Automated liquid handler Manual Pipettes -Freezer #### Input WPL0002, Source plate with DNA parts #### Method Enzyme mixture preparation Keep the Type IIs restriction enzyme and T4 DNA ligase on ice. Thaw 10x T4 DNA ligase buffer at room temperature. Vortex the thawed buffer, then perform a light spin-down to collect the liquids. Prepare the Golden Gate reaction mixture by combining the following components in a 2mL tube. The volume is depending on the number of samples. 0.04 µL T4 DNA ligase 0.04 µL BsaI-HF (restriction enzyme) 0.1 µL 10x T4 DNA ligase buffer Fill up Distilled Water (DW) to 1 μ L after subtracting the volume of the DNA parts (adjust based on total DNA part volume). Mix thoroughly by pipetting or vortexing, then perform a spin-down. Keep the prepared mixture on ice. add in 384-well plate (WPL0002) Source plate information: \Source for Golden Gate-PCR.csv #### Output WPL0002, Source plate for Golden Gate assembly

[Centrifugation] Removing Bubbles from The Source Plate #### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagent None #### Consumables None #### Equipment Micro plate centrifuge #### Input WPL0002, a Source plate for Golden Gate assembly #### Method Slightly spin down the source plate for removing bubbles #### Output WPL0002, a Bubbles removed source plate for Golden Gate assembly ### [Nanoliter liquid handling] Transfer DNA Parts Using Acoustic Liquid Handler ### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagents None #### Consumables None #### Equipment Acoustic liquid handler #### Input WPL0001, a 96 well plate for Golden Gate assembly (destination plate) WPL0002, a Bubbles removed source plate for Golden Gate assembly #### Method Use acoustic liquid handler to transfer the DNA parts from the 384-well PP plate (source plate) to the 96-well skirted plate (destination plate) Follow the mapping file for precise transfer and dispense 50 fmol of each DNA part based on the DNA concentration and size Mapping file: mapping file.csv #### Output WPL0001, a Part mixture prepared for Golden Gate assembly ### [Centrifugation] Removing Bubbles from Destination Plate #### Meta

Operator: User -Date: DD.MM.YYYY _ Time: 00:00 #### Reagent None #### Consumables None #### Equipment Micro plate centrifuge #### Input WPL0001, Part mixture prepared for Golden Gate assembly #### Method Slightly spin down the destination plate for removing bubbles #### Output WPL0001, a Bubble-free destination plate prepared for Golden Gate assembly _ ### [Sealing] Golden Gate Assembly Mixture-Contained Plate Sealing #### Meta Operator: User -Date: DD.MM.YYYY Time: 00:00 _ #### Reagent None #### Consumables Heat-resistant sealing film #### Equipment Plate sealer Freezer (Optional) #### Input WPL0001, a Bubble-free destination plate prepared for Golden Gate assembly #### Method Seal the 96-well skirted plate using heat-resistant film with a plate sealer. _ Seal the source plate and store it in the refrigerator. (optional) #### Output WPL0001, a Sealed 96-well skirted plate ready for DNA assembly (not assembled) ### [Thermocycling] Golden Gate Assembly Reaction #### Meta - Operator: User - Date: DD.MM.YYYY - Time: 00:00 #### Reagents None

Consumable None #### Equipment Thermocycler #### Input WPL0001, a Sealed 96-well skirted plate ready for DNA assembly (not assembled) #### Method - Turn on the thermocycler - Put the plate on the thermocycler - Thermocycling as a following method **Step** | **Temperature** | **Time** | **Description** | | 1 | 37°C | 10 min | Initial cutting DNA with restriction enzymes | 2 | 37°C Restriction enzyme active step | 5 min | 16°C 3 | 5 min | Ligation, repeat step 2 for 5 cycles L | 75°C 4 | 5 min | Inactivation of ligase I 80°C 10 min | Inactivation of restriction enzyme 5 L 6 | 4°C | Hold at 4°C for storage | -#### Output - WPL0001, a Sealed 96-well skirted plate contains Golden Gate-assembled DNA ### [Centrifugation] Removing Bubbles from Golden Gate assembly mixture #### Meta Operator: User Date: DD.MM.YYYY Time: 00:00 #### Reagent None #### Consumables None #### Equipment Micro plate centrifuge #### Input WPL0001, a Sealed 96-well skirted plate contains Golden Gate-assembled DNA #### Method Slightly spin down the destination plate for removing bubbles #### Output WPL0001, a Bubbles removed 96-well skirt plate contains Golden Gate-assembled DNA ### [Peeling] Plate peeling for Transformation #### Meta Operator: User Date: DD.MM.YYYY Time: 00:00

```
#### Reagent
    None
#### Consumable
    None
#### Equipment
    Peeler
#### Input
    WPL0001, a Bubbles removed 96-well skirt plate contains Golden Gate-assembled DNA
_
#### Method
   Peeling selected plate
#### Output
    WPL0001, a Film-peeled 96-well skirt contains Golden Gate-assembled DNA
_
## Biology-mediated DNA Transfers
### [Sample Storage] Retrieve Competent Cell Plate
#### Meta
    Operator: User
   Date: DD/MM/YYYY
   Time: 00:00
_
#### Reagents
   None
#### Consumable
    None
#### Equipment
   Sample storage system
   Ice in Rubber basket
#### input
  Competent cell (30 µL per well) contained 96-well skirt plate
-
#### Method
   Put competent cell plate from sample storage system
   Thawing the competent cell on Ice (96-well plate)
_
#### Output
    WPL0003, a Competent cell (30 \mu L per well) contained 96-well skirt plate
_
### [Liquid handling] Transformation Reagent Preparation
#### Meta
    Operator: User
    Date: DD/MM/YYYY
   Time: 00:00
_
#### Reagents:
   SOC media
#### Consumables:
   Single-well plate (WPL0004)
_
    Sterile pipette tips compatible with liquid handling system
```

Equipment: - Liquid handler
Input:
- Experiment design documents
<pre>#### Method: Bring plates out for experiment as designed Dispense >10 mL SOC medium into the single-well reservoir plate (WPL0004)</pre>
<pre>#### Output: WPL0004, 1-well plate contained SOC media</pre>
[Liquid handling] Heat-shock Transformation
Meta
 Operator: User Date: DD/MM/YYYY Time: 00:00
Reagents - None
<pre>#### Consumable - WPL0005, LB agar plate supplemented with chloramphenicol - WPL0006, LB agar plate supplemented with chloramphenicol for 1/10 dilution spotting - Sterile pipette tips compatible with liquid handling system</pre>
Equipment - Liquid handler
<pre>#### Input - WPL0001, a Film-peeled 96-well skirt contains Golden Gate-assembled DNA - WPL0003, a Competent cell (30 μL per samples) contained 96-well skirt plate - WPL0004, 1-well plate contained SOC media</pre>
Method
- Position the DNA input plate (WPL0001), competent cell plate (WPL0003), SOC medium reservoir (WPL0004), and sterile LB agar plates (WPL0005, WPL0006) on the automated liquid handling deck
 Execute the automated transformation protocol Transfer Competent cell to DNA product Cold incubation for 30 min
- 42°C heat-shock for 90 sec
- Incubate immediately on ice for an additional 2 min - Add SOC medium to each transformed cell mixture
- Allow cell recovery at 37 $^\circ\!\!\!C$ with agitation for 45 min - Spot 9 µL of the transformation mixture onto LB agar plates (WPL0005)
 Spot 9 μL of the transformation mixture onto LB agar plates (WPL0005) Perform a 1/10 dilution of the transformation mixture using SOC medium and spot 9 μL onto separate LB agar plates (WPL0006)
<pre>#### Output - WPL0005, a Transformants spotted LB media plate - WPL0006, a 1/10 diluted Transformants spotted LB media plate</pre>
Solid Media Cell Culture ### [Incubation] Plate Incubation
""" [Include100] Flace Include100

Meta
- Operator: User
- Date: DD/MM/YYYY
- Time: 00:00
Reagents
- None
- None
Consumable
- None
Equipment
- Incubator
input
- WPL0005, a Transformants spotted LB media plate
- WPL0006, a 1/10 diluted Transformants spotted LB media plate
Method
- Place the plate in an incubator set to 37°C.
- Incubate for overnight (~16 h)
Output
 WPL0005, a Transformants spotted LB media plate with colonies
- WPL0006, a 1/10 diluted Transformants spotted LB media plate with colonies
Result
- image of colonies
![WPL0005](<u>image-3.png</u>)
![WPL0006](image-4.png)
.[

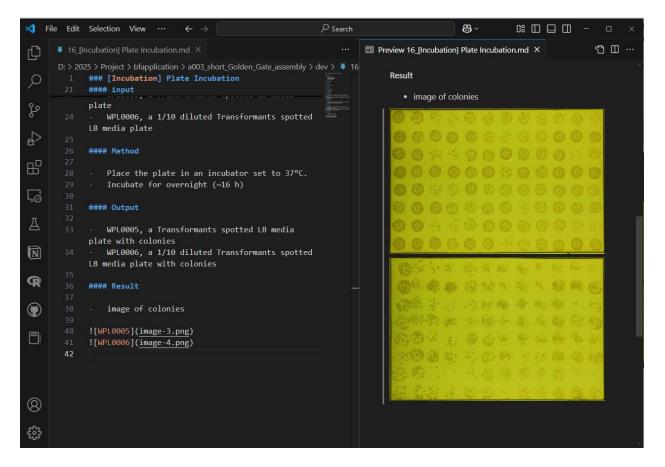


Fig S4. Capture image of "[Incubation] Plate incubation" markdown file and its preview by Visual Studio code.

Supplementary References

1. Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN.

Science **378**, 49–56 (2022).

- 2. Hutchison, C. A. *et al.* Design and synthesis of a minimal bacterial genome. *Science* **351**, aad6253 (2016).
- Kanigowska, P., Shen, Y., Zheng, Y., Rosser, S. & Cai, Y. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology. *SLAS Technology* 21, 49–56 (2016).

- Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. *Nature biotechnology* **39**, 1348–1365 (2021).
- Pryor, J. M., Potapov, V., Bilotti, K., Pokhrel, N. & Lohman, G. J. S. Rapid 40 kb Genome Construction from 52 Parts through Data-optimized Assembly Design. *ACS Synth. Biol.* 11, 2036–2042 (2022).